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A new atomic decomposition of the two-parameter dyadic martingale Hardy
spaces Hp defined by the quadratic variation is given. We introduce Hp-quasi-local
operators and prove that if a sublinear operator V is Hp-quasi-local and bounded
from L2 to L2 then it is also bounded from Hp to Lp (0<p�1). By an interpola-
tion theorem we get that V is of weak type (H *

1 , L1) where the Hardy space H *
1

is defined by the hybrid maximal function. As an application it is shown that the
maximal operator of the Cesa� ro means of a two-parameter martingale is bounded
from Hp to Lp (4�5<p��) and is of weak type (H *

1 , L1). So we obtain that the
Cesa� ro means of a function f # H *

1 converge a.e. to the function in question.
Finally, it is verified that if the supremum is taken over all two-powers, only, then
the maximal operator of the Cesa� ro means is bounded from Hp to Lp for every
2�3<p��. � 1997 Academic Press

1. INTRODUCTION

For double trigonometric Fourier series Marcinkievicz and Zygmund
[16] proved that the Cesa� ro means _n, m f of a function f # L1 converge a.e.
to f as n, m � � provided that the pairs (n, m) are in a positive cone, i.e.,
provided that m�n�: and n�m�:. This result for double Walsh�Fourier
series is verified by the author [25].

It is known that, for double Walsh�Fourier series, _n, m f � f in Lp norm
as min(n, m) � � whenever f # Lp for some 1�p<�. Moreover, if
1<p<� then the convergence holds a.e., too (see Weisz [28]). Mo� ricz et
al. [18] have proved that if f # L log L then the Cesa� ro summability holds.

The Hardy�Lorentz spaces H g
p, q and Hp, q of two-parameter martingales

on the unit square are defined by the Lp, q Lorentz norms of the diagonal
maximal function supn # N | fn, n | and of the two-parameter quadratic varia-
tion (0<p, q��), respectively. Of course, H g

p =H g
p, p and Hp=Hp, p are

the usual Hardy spaces (0<p��). Note that Hp, q/H g
p, q .
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The following maximal operators of the Cesa� ro means are to be
investigated: _*f, resp. _f, is defined by the supremum over N2 of |_n, m f |,
resp. |_2n , 2m f |. Let _:f be the supremum over a positive cone of |_n, m f |.
In the one-dimensional case it is known that _* is bounded from H1 to L1

and is of weak type (L1 , L1), i.e.,

sup
:>0

:*(_*f >:)�C & f &1

whenever f # L1 (see Fujii [12] and Schipp [21]). It was proved by Mo� ricz
et al. [18] that the operator _ is of weak type (H *

1 , L1) where H *
1 is

defined by the expectation of the hybrid maximal function supn # N | fn, � |.
Moreover, _* is bounded from Lp to Lp (1<p<�) and _: is bounded
from H g

p, q to Lp, q for 1�2<p<� and 0<q�� and is of weak type
(L1 , L1) (see Weisz [28] and [25]).

In this paper we extend these results. A new atomic decomposition of Hp

is given; more exactly, the Hp-atoms are decomposed into the sum of
``elementary (rectangle) particles.'' By this theorem, in the definition of the
Hp-quasi-local operators it is enough to take rectangle Hp-atoms. An
operator V is Hp-quasi-local (0<p�1) if there exists $>0 such that for
every rectangle Hp-atom a and for every r�1 the integral of |Va| p over
[0, 1)2"Rr is less than Cp2&$r where the dyadic rectangle R is the support
of a and Rr is the 2r-fold dilation of R. With the help of Journe� 's covering
lemma [15] we show that a sublinear and Hp-quasi-local operator V which
is bounded from L2 to L2 is also bounded from Hp to Lp (0<p�1). We
get with interpolation that V is bounded from Hp, q to Lp, q (0<p<2,
0<q��) as well and is of weak type (H *

1 , L1). The analogous results for
the classical Hardy space are due to Chang and Fefferman [7, 8].

It will be shown that _* is Hp-quasi-local for each 4�5<p�1. Conse-
quently, _* is bounded from Hp, q to Lp, q for 4�5<p<�, 0<q��, and
is of weak type (H *

1 , L1). A usual density argument implies that _n, m f � f
a.e. as min (n, m) � � whenever f # H *

1 . Finally, it is proved that the
operator _ is Hp-quasi-local for each 2�3<p�1 and so, by interpolation,
it is bounded from Hp, q to Lp, q for every 2�3<p<� and 0<q��.

2. MARTINGALES AND HARDY SPACES

For a set X{< let X2 be its Cartesian product X_X taken with itself.
An element from N2 will be denoted by (n, m) or simple by n. In this paper
the unit square [0, 1)2 and the two-dimensional Lebesgue measure * are to
be considered.
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By a dyadic interval we mean one of the form [k2&n, (k+1) 2&n) for
some k, n # N, 0�k<2n. Given n # N and x # [0, 1) let In(x) denote the
dyadic interval of length 2&n which contains x. The Cartesian product of
two dyadic intervals is said to be a dyadic rectangle. Clearly, the dyadic
rectangle of area 2&n_2&m containing (x, y) # [0, 1)2 is given by

In, m(x, y) :=In(x)_Im( y).

The _-algebra generated by the dyadic rectangles [In, m(x): x # [0, 1)2]
will be denoted by Fn, m (n, m # N), more precisely,

Fn, m=_[[k2&n, (k+1) 2&n)_[l2&m, (l+1) 2&m) :0�k<2n, 0�l<2m]

where _(H) denotes the _-algebra generated by an arbitrary set system H.
Introduce the following _-algebras:

Fn1 , � :=_ \ .
�

k=0

Fn1 , k+ , F�, n2
:=_ \ .

�

k=0

Fk, n2+ (n=(n1 , n2) # N2).

The expectation and the conditional expectation operators relative to Fn ,
Fn1 , � , and F�, n2

(n # N2) are denoted by E, En , En1 , � , and E�, n2
, respec-

tively. We briefly write Lp or Lp[0, 1)2 instead of the real Lp([0, 1)2, *)
space while the norm (or quasinorm) of this space is defined by & f &p :=
(E | f | p)1�p (0<p��). For simplicity, we assume that for a function f # L1

we have En, 0 f=E0, n f=0 (n # N).
An integrable sequence f=( fn , n # N2) is said to be a martingale if

(i) it is adapted, i.e., fn is Fn measurable for all n # N2

(ii) En fm= fn for all n�m, where for n=(n1 , n2), m=(m1 , m2) # N2,
n�m means that n1�m1 and n2�m2 .

For simplicity, we always suppose that for a martingale f we have fn=0 if
n1=0 or n2=0. Of course, the theorems that are to be proved later are
true with a slight modification without this condition, too.

The martingale f =( fn , n # N2) is said to be Lp-bounded (0<p��) if
fn # Lp (n # N2) and

& f &p := sup
n # N2

& fn&p<�.

If f # L1 then it is easy to show that the sequence f� =(En f, n # N2) is a
martingale. Moreover, if 1�p<� and f # Lp then f� is Lp-bounded and

lim
min(n1 , n2) � �

&En f&f &p=0,
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consequently,

& f� &p=& f &p

(see Neveu [19]). The converse of the latest proposition holds also if
1<p<� (see Neveu [19]): for an arbitrary martingale f=( fn , n # N2)
there exists a function g # Lp for which fn=En g if and only if f is
Lp-bounded. If p=1 then there exists a function g # L1 of the preceeding
type if and only if f is uniformly integrable (see Neveu [19]), namely, if

lim
y � �

sup
n # N2

|
[ | fn |>y]

| fn | dP=0.

Thus the map f [ f� :=(En f, n # N2) is isometric from Lp onto the space
of Lp-bounded martingales when 1<p<�. Consequently, these two
spaces can be identified with each other. Similarly, the L1 space can be
identified with the space of uniformly integrable martingales. For this
reason a function f # L1 and the corresponding martingale (En f, n # N2)
will be denoted by the same symbol f.

The distribution function of a Borel measurable function f is defined by

*([ | f |>:]) :=*([x: | f (x)|>:]) (:�0).

The weak Lp space Lp* (0<p<�) consists of all measurable functions f
for which

& f &Lp*
:=sup

:>0

:*([ | f |>:])1�p<�

while we set L*�=L� .
The spaces Lp* are special cases of the more general Lorentz spaces Lp, q .

In their definition another concept is used. For a measurable function f the
non-increasing rearangement is defined by

f� (t) :=inf[:: *([ | f |>:])�t].

Lorentz space Lp, q is defined as follows: for 0<p<�, 0<q<�,

& f &p, q :=\|
�

0
f� (t)q tq�p dt

t +
1�q

while for 0<p��

& f &p, � :=sup
t>0

t1�pf� (t).
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Let

Lp, q :=Lp, q([0, 1)2, *) :=[ f : & f &p, q<�].

One can show the following equalities:

Lp, p=Lp , Lp, �=Lp* (0<p��)

(see e.g. Bennett and Sharpley [1] or Bergh and Lo� fstro� m [2]).
The maximal function and hybrid maximal function of a martingale

f =( fn, m ; n, m # N) are defined by

f *:= sup
n, m # N

| fn, m | , f * :=sup
n # N

| fn, � |.

It is easy to see that, in the case f # L1 , the maximal functions can also be
given by

f *(x, y)= sup
n, m # N

1
*(In, m(x, y)) } |In, m(x, y)

f d* }
and

f *(x, y)=sup
n # N

1
*(In(x)) } |In(x)

f (t, y) dt } ,
respectively.

We define the martingale differences by

dn f :=fn1 , n2
&fn1&1, n2

&fn1 , n2&1+fn1&1, n2&1 (n # N2)

and dk, 0 f=f0, k f=0 (k # N).
It is easy to show that (dn f, n # N2) is an integrable and adapted

sequence. Moreover, one can conclude that

En dm f=0 (n �3 m). (1)

Conversely, if an integrable and adapted function sequence (dn , n # N2) has
the property (1) then ( fn , n # N2) is a martingale where fn :=�m�n dm .

The quadratic variation of a martingale f is introduced with

S( f ) :=\ :
n # N2

|dn f | 2+
1�2

.
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It was proved by Brossard [4, 5] and Metraux [17] that

&S( f )&pt& f *&p (0<p<�) (2)

where t denotes the equivalence of the norms. The equivalences

& f *&pt& f *&pt& f &p (1<p��) (3)

follow from Doob's inequality (see Neveu [19], Cairoli [6]). For an
arbitrary function f # L1 we have

sup
:>0

:*( f*>:)�& f *&1 (4)

and

sup
:>0

:*(S( f )>:)�C & f *&1 . (5)

Note that (4) was proved by Weisz [27] and (5) by Frangos and Imkeller
[11]. On the right-hand sides of (4) and (5), & f *&1 cannot be replaced by
& f &1 ; counterexamples can be found for the first case in Cairoli [6] and
for the second case in Imkeller [14].

For 0<p, q�� the martingale Hardy�Lorentz spaces Hp, q and H *

p, q

consist of all martingales for which

& f &Hp, q :=&S( f )&p, q<�

and

& f &H*
p, q

:=& f * &p, q<�,

respectively. In case p=q the usual definitions of Hardy spaces Hp, p=Hp

and H*

p, p=H *

p are obtained. Note that it is unknown whether Hp, q can be
defined with f *. We verified in [27] that

Hp, qtLp, q (1<p<�, 0<q��).

Recall that L log L/H *

1 , more exactly,

E( f *)�C+CE( | f | log+ | f | )

where log+ u=1[u>1] log u (see Garsia [13]).
The following interpolation result concerning Hardy�Lorentz spaces will

be used several times in this paper (see Weisz [26] and [27]).
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Theorem A. If a sublinear operator V is bounded from Hp0
to Lp0

and
from Hp1

to Lp1
then it is also bounded from Hp, q to Lp, q if p0<p<p1 and

0<q��.

3. QUASI-LOCAL OPERATORS

The atomic decomposition of the Hardy spaces in the two-parameter
case is much more complicated than in the one-parameter case. One reason
for this is that the support of a two-parameter atom is not a dyadic interval
or square but an open set. This was proved in Bernard [3] and Weisz
[27]. However, we now give a finer atomic decomposition and decompose
the atoms into ``elementary (rectangle) particles.''

First of all we introduce some notations. Suppose F/[0, 1)2 is open
with respect to the topology induced by the dyadic rectangles, which means
F is the union of countably many dyadic rectangles. Denote by M(F ) the
maximal dyadic subrectangles of F. Let M1(F ) denote those dyadic sub-
rectangles R/F, R=I_J that are maximal in the x direction. In other
words, if S=I $_J#R is a dyadic subrectangle of F then I=I $. Define
M2(F ) similarly.

A function a # L2 is an Hp-atom if

(i) supp a/F for an open set F/[0, 1)2

(ii) &a&2�*(F )1�2&1�p

(iii) a can be further decomposed into the sum of ``elementary
particles'' aR # L2 (R # M(F )) in the sense of

En, ma= :
R # M(F )

En, maR a.e. for all n, m # N,

satisfying

(:) supp aR/R/F
( ;) for all x, y # [0, 1) and R # M(F ),

|
1

0
aR(x, y) dx=|

1

0
aR(x, y) dy=0

(#) \ :
R # M(F )

&aR&2
2+

1�2

�*(F )1�2&1�p.

If a # L2 satisfies (i) with a dyadic rectangle F, (ii), and ( ;) then a is
called a rectangle Hp-atom.
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Now the atomic decomposition of Hp is formulated.

Theorem 1. A martingale f =( fn, m ; n, m # N) is in Hp (0<p�1) if and
only if there exist a sequence (ak, k # N) of Hp-atoms and a sequence
( +k , k # N) of real numbers such that

:
�

k=0

+kEn, m ak=fn, m for all n, m # N

(6)

:
�

k=0

| +k | p<�.

Moreover, the following equivalence of norms holds :

& f &Hptinf \ :
�

k=0

| +k | p+
1�p

(7)

where the infimum is taken over all decompositions of f of the form (6).

Proof. It is proved in Weisz [27] that there exist functions ak # L2

satisfying (i) and (ii) and real numbers +k (k # N) such that (6) and one
side of (7), more exactly, the inequality

\ :
�

k=0

| +k | p+
1�p

�Cp & f &Hp ,

hold.
Denote one of the functions ak by a. Let F be the support of a. It is

also verified in Weisz [27] that there exists a non-decreasing sequence
(Fn, m ; n, m # N) of sets, which means Fk, l/Fn, m if k�n and l�m, such
that

Fn, m # Fn&1, m&1 and .
n, m # N

Fn, m=F.

Moreover,

a= :
n, m # N

1Fn, m dn, ma.

Equation (1) implies that the martingale difference are orthogonal, so we
have

&a&2
2=E \ :

n, m # N

1Fn, m |dn, ma| 2+ . (8)
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Since Fn, m # Fn&1, m&1 , it can be decomposed into a finite union of dyadic
rectangles F k

n, m , i.e.,

Fn, m=.
k

F k
n, m

with F k
n, m # Fn&1, m&1 .

To each F k
n, m we associate a maximal dyadic subrectangle F� k

n, m of F, i.e.,
F� k

n, m # M(F ), such that F k
n, m/F� k

n, m . For R # M(F ) let

aR := :
n, m # N

:
k :F� k

n, m=R

1F k
n, m

dn, ma.

It is easy to see that this sum converges a.e. and also in L2 norm.
Obviously,

En, ma= :
R # M(F )

En, maR (n, m # N)

since the sum of the right-hand side is finite for each (n, m) # N2. Note
that

a= :
R # M(F )

aR in L2

because of the orthogonality of the martingale differences. Since F k
n, m/R,

(:) is obvious. If R # FN&1, M&1 then (1) implies that

Ek, laR=0 for all (k, l ) �3 (N, M ).

Henceforth

Ek, � aR=0 for all k�N&1.

This yields that

|
1

0
aR(x, y) dx=0.

The other equation of ( ;) can be proved in the same way. Using the
orthogonality of the martingale difference and the fact that the sets
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F k
n, m are disjoint for each fixed n, m # N and (8), we can conclude that

:
R # M(F )

&aR &2
2= :

R # M(F )

E \ :
n, m # N

:
k :F� k

n, m=R

1F k
n, m

|dn, ma|2+
=E \ :

n, m # N

:
k

1F k
n, m

|dn, ma| 2+
=&a&2

2�*(F )1&2�p

which proves (#).
For the other side of (7) we prove that if a is an Hp-atom then

&a&Hp�1 (0<p�1).

Indeed, from the definition of the atom it follows that

dn, ma= :
R # M(F )

dn, maR (n, m # N)

and

supp dn, maR/R.

Hence

supp S(a)/F.

Applying (2), (3), and Ho� lder's inequality we have

E(S p(a))�[E(S 2(a))] p�2 *(F )1&p�2�1.

Assume that 0<p�1 and f has a decomposition of the form (6). It is easy
to check that in this case

S( f )� :
�

k=0

| +k | S(ak). (9)

Consequently,

E[S p( f )]� :
�

k=0

|+k | p E[S p(ak)]� :
�

k=0

| +k | p (10)

holds, which finishes the proof of the theorem. K
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Note that Hp cannot be decomposed into rectangle Hp-atoms; a counter-
example can be found in Weisz [27].

The analogue of this theorem in the classical case was shown by
Fefferman [8].

Motivated by the definition in Mo� ricz et al. [18] and Fefferman [8] we
introduce the Hp-quasi-local operators. For each daydic interval I let I r

(r # N) be the dyadic interval for which I/I r and

*(I r)=2r*(I ).

If R :=I_J is a dyadic rectangle then set

Rr :=I r_J r.

Although Hp cannot be decomposed into rectangle atoms, in the defini-
tion of quasi-local operators it is enough to take these atoms.

An operator V, which maps the set of martingales into the collection of
measurable functions, is called Hp-quasi-local if there exists $>0 such that
for every rectangle Hp-atom a supported on the dyadic rectangle R and for
every r�1 one has

|
[0, 1)2"Rr

|Va| p d*�Cp2&$r.

Before stating the main result of this section we recall Journe� 's covering
lemma in one of its forms. Opposed to the one-parameter case, an open
subset of [0, 1)2 cannot be decomposed into disjoint maximal dyadic
rectangles, however the following lemma holds.

Lemma 1 (Journe� [15]). Assume that F is an open subset of [0, 1)2 and
R=I_J belongs to M2(F ). Let F1 :=[(1F)*>1�2] and I� be the maximal
dyadic interval containing I such that I� _J/F1 , i.e., I� _J # M1(F1). Set

#1(R, F ) :=
*(I� )
*(I )

.

Define #2(R, F ) similarly. Then

* \ .
R # M2(F )

I� _J+�C*(F ) (11)
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and

:
R # M2(F )

#1(R, F )&$ *(R)�C$ *(F ), (12)

for every $>0 where C$ depends only on $, not on F.

Of course there is a symmetric form of this lemma for rectangles in
M1(F ).

Note that (11) follows easily from Markov's inequality and from (3):

*(F1)�4E[(1F)*2]�CE(12
F)=C*(F ). (13)

Journe� 's lemma is extended to higher dimensions by Pipher [20].
The following result says that for an operator V to be bounded from Hp

to Lp (0<p�1) it is enough to check V on rectangle Hp-atoms and the
boundedness of V on L2 .

Theorem 2. Suppose that the operator V is sublinear and Hp-quasi-local
for some 0<p�1. If V is bounded from L2 to L2 then

&Vf &p�Cp & f &Hp ( f # Hp).

Proof. Similarly to (9) and (10) it is enough to show that if a is an
Hp-atom then

&Va&p�Cp . (14)

Let a be an Hp-atom with support F. Set

F1 :=[(1F)*>1�2] and F2 :=[(1F1
)*>1�2].

As in (13), we have

*(F2)�C*(F1)�C*(F ).

Given a dyadic rectangle R=I_J # M(F ) define the dyadic interval I� such
that

I� #I and R$ :=I� _J # M1(F1).

Furthermore define the dyadic interval J� such that

J� #J and R� :=I� _J� # M2(F2).
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Set

2r1 :=#1(R, F ) :=
*(I� )
*(I )

and 2r2 :=#2(R$, F1) :=
*(J� )
*(J )

.

Take the decomposition

a= :
R # M(F )

aR

as in Theorem 1. Then

|
�R # M(F ) R�

|Va| p d*�* \ .
R # M(F )

R� +
1&p�2

\|[0, 1)2
|Va| 2 d*+

p�2

�*(F2)1&p�2 *(F ) p�2&1�Cp .

So we have to consider

|
[0, 1)2 "�R # M(F ) R�

|Va| p d*� :
R # M(F )

|
[0, 1)2"R�

|VaR | p d*.

Obviously,

|
[0, 1)2 "R�

|VaR | p d*�|
([0, 1)"I� )_[0, 1)

|VaR| p d*+|
[0, 1)_([0, 1)"J� )

|VaR | p d*.

Observe that

|
([0, 1)"I� )_[0, 1)

|VaR | p d*�|
[0, 1)2"(I� _J r1)

|VaR | p d*=|
[0, 1)2 "Rr1

|VaR | p d*.

Since

aR

&aR &2

*(R)1�2&1�p

is a rectangle Hp-atom, we have by the Hp-quasi-locality that

|
([0, 1)"I� )_[0, 1)

|VaR | p d*�Cp 2&$r1 &aR& p
2 *(R)1&p�2

=Cp#1(R, F )&$ &aR& p
2 *(R)1&p�2.
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By Ho� lder's inequality and Journe� 's lemma,

:
R # M(F )

|
([0, 1)"I� )_[0, 1)

|VaR | p d*

�Cp \ :
R # M(F )

&aR&2
2+

p�2

\ :
R # M(F )

#1(R, F )&2$�(2&p) *(R)+
1&p�2

�Cp *(F ) p�2&1 *(F )1&p�2=Cp .

Similarly,

:
R # M(F )

|
[0, 1)_([0, 1)"J� )

|VaR | p d*

�Cp :
R # M(F )

#2(R$, F1)&$ &aR& p
2 *(R)1&p�2

�Cp*(F ) p�2&1 \ :
R # M(F )

#2(R$, F1)&2$�(2&p) *(R)+
1&p�2

.

It is easy to see that if R1 , R2 # M(F ) and R$1=R$2 then R1 & R2=< or
R1=R2 . Recall that R$ # M1(F1). So

:
R # M(F )

#2(R$, F1)&2$�(2&p) *(R)= :
S # M1(F1)

\ :
R$=s

*(R)+ #2(S, F1)&2$�(2&p)

� :
S # M1(F1)

*(S ) #2(S, F1)&2$�(2&p)

�Cp*(F1)�Cp *(F )

where we applied again Journe� 's lemma and (13). Consequently,

:
R # M(F )

|
[0, 1)_([0, 1)"J� )

|VaR | p d*�Cp

which proves (14) as well as the theorem. K

This result in the classical case is due to Fefferman [8].
Theorem A and (5) imply

Corollary 1. Suppose that the sublinear operator V is Hp-quasi-local
for each p0<p�1 ( p0<1). If V is bounded from L2 to L2 then

&Vf&p, q�Cp, q & f &Hp, q ( f # Hp, q)
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for every p0<p<2 and 0<q��. Specially, V is of weak type (H *

1 , L1),
i.e., if f # H *

1 then

&Vf&1, �=sup
:>0

:*( |Vf |>:)�C1 & f &H1 , �

=C1 sup
:>0

:*(S( f )>:)�C1 & f &H 1
* .

4. CESA� RO SUMMABILITY OF DOUBLE
WALSH�FOURIER SERIES

First the Walsh system is to be introduced. Every point x # [0, 1) can be
written in the following way:

x= :
�

k=0

xk

2k+1 , 0�xk<2, xk # N.

In case there are two different forms, we choose the one for which
limk � � xk=0.

The functions

rn(x) :=exp(?xn - &1) (n # N)

are called Rademacher functions.
The product system generated by these functions is the one-dimensional

Walsh system

wn(x) := `
�

k=0

rk(x)nk

where n # ��
k=0 nk 2k, 0�nk<2, and nk # N.

The Kronecker product (wn, m ; n, m # N) of two Walsh systems is said to
be the two-dimensional Walsh system. Thus

wn, m(x, y) :=wn(x) wm( y).

Recall that the Walsh�Dirichlet kernels

Dn := :
n&1

k=0

wk
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satisfy

D2n(x)={2n

0
if x # [0, 2&n)
if x # [2&n, 1)

(15)

for n # N (see Fine [10]).
If f # L1 then the number

f� (n, m) :=E( fwn, m)

is said to be the (n, m) th Walsh�Fourier coefficient of f (n, m # N). Let us
extend this definition to martingales as well. If f=( fk, l ; k, l # N ) is a mar-
tingale then let

f� (n, m) := lim
min(k, l ) � �

E( fk, lwn, m) (n, m # N).

Since wn, m is Fk, k measurable for n, m<2k, it can immediately be seen
that this limit does exist. Note that if f # L1 then Ek, l f � f in L1 norm as
k, l � �, hence

f� (n, m)= lim
min(k, l ) � �

E((Ek, l f ) wn, m) (n, m # N).

Thus the Walsh�Fourier coefficients of f # L1 are the same as the ones of
the martingale (Ek, l f ; k, l # N) obtained from f.

Denote by sn, m f the (n, m) th partial sum of the Walsh�Fourier series of
a martingale f, namely,

sn, m f := :
n&1

k=0

:
m&1

l=0

f� (k, l) wk, l .

It is easy to see that

s2n, 2m f=fn, m . (16)

Recall that the Walsh�Feje� r kernels

Kn :=
1
n

:
n

k=1

Dn (n # N)

satisfy

|Kn(x)|� :
N&1

j=0

2 j&N :
N&1

i=j

(D2i (x)+D2i (x+4 2&j&1)) (17)
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for x # [0, 1), n, N # N, and 2N&1�n<2N, and

K2n(x)= 1
2 \2&nD2n(x)+ :

n

j=0

2 j&n D2n(x +4 2&j&1)+ (18)

for x # [0, 1) and n # N, where +4 denotes the dyadic addition (see e.g.
Shipp et al. [23]). For n, m # N and a martingale f the Cesa� ro mean of
order (n, m) of the double Walsh�Fourier series of f is given by

_n, m f :=
1

nm
:
n

k=1

:
m

l=1

sk, l f.

It is simple to show that

_n, m f (x, y)=|
1

0
|

1

0
f (t, u) Kn(x +4 t) Km( y +4 u) dt du

if f # L1 .
For a martingale f we consider the maximal operators

_*f := sup
n, m # N

|_n, m f |, _f := sup
n, m # N

|_2n, 2m f |.

It is shown in Weisz [28] that

&_*f &p�Cp & f &p (1<p��). (19)

Now we state our main result.

Theorem 3. There are absolute constants C and Cp, q such that

&_*f &p, q�Cp, q & f &Hp, q ( f # Hp, q) (20)

for every 4�5<p<� and 0<q��. Especially, if f # H *
1 then

*(_*f >:)�
C
:

& f *&1 (:>0). (21)

Proof. By Corollary 1, (19), and Wolff 's interpolation theorem [29]
(see also Weisz [27]), the proof of Theorem 3 will be complete if we show
that the operator _* is Hp-quasi-local for every 4�5<p�1.

Let a be a rectangle Hp-atom with support R=I_J and *(I )=2&K,
*(J)=2&L (K, L # N). Without loss of generality we can suppose that
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I=[0, 2&K) and J=[0, 2&L). It is easy to see that â(n, m)=0 if n<2K or
m<2L, so, in this case, _n, ma=0. Therefore we assume that n�2K and
m�2L.

To prove the quasi-locality of _* we have to integrate |_*a| p over
[0, 1)2"Rr where r�1 is arbitrary. We do this in three steps.

Step 1: Integrating over ([0, 1)"I r)_J r. If j�K&r and x � I r then
x +4 2&j&1 � I r. Consequently, for x � I r and i�j�K&r we have

a(t, u) D2i (x +4 t)=a(t, u) D2i (x +4 t +4 2&j&1)=0.

Recall that 2N>n�2N&1, so N&1�K. Henceforth, for x � I r,

|_n, ma(x, y)|�|
I } |J

a(t, u) Km(y +4 u) du } |Kn(x +4 t)| dt

� :
N&1

j=0

2 j&N :
N&1

i=j
|

I } |J
a(t, u) Km(y +4 u) du}

(D2i (x +4 t)+D2i (x +4 t +4 2&j&1)) dt

�C2&K :
K&r&1

j=0

2 j :
K&1

i=j
|

I } |J
a(t, u) Km( y +4 u) du }

(D2i (x +4 t)+D2i (x +4 t +4 2&j&1)) dt

+C :
K&r&1

j=0

2 j :
�

i=K

2&i |
I } |J

a(t, u) Km( y +4 u) du }
(D2i (x +4 t)+D2i (x +4 t +4 2&j&1)) dt.

Observe that the right hand side is independent of n. Therefore

_*a(x, y)�C2&K :
K&r&1

j=0

2 j :
K&1

i=j
|

I
(D2i (x +4 t)+D2i (x \4 t +4 2&j&1))

sup
m # N } |J

a(t, u) Km( y +4 u) du } dt

+C :
K&r&1

j=0

2 j :
�

i=K

2&i |
I

(D2i (x +4 t)+D2i (x +4 t +4 2&j&1))

sup
m # N } |J

a(t, u) Km( y +4 u) du } dt

=: (A)+(B).
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By Ho� lder's inequality,

|
Jr

(A) p dy

�Cp*(J r)1&p 2&Kp :
K&r&1

j=0

2jp :
K&1

i=j \|I
(D2i (x +4 t)+D2i (x +4 t +4 2&j&1))

|
Jr

sup
m # N } |J

a(t, u) Km( y +4 u) du } dy dt+
p

.

Using again Ho� lder inequality and (19) for one dimension and for a fixed t,
we obtain

|
J r

sup
m # N } |J

a(t, u) Km( y +4 u) du } dy

�*(J r )1�2 \|
1

0
sup
m # N } |J

a(t, u) Km( y +4 u) du }
2

dy+
1�2

�*(J r )1�2 \|
1

0
|a(t, y)| 2 dy+

1�2

.

Hence

|
Jr

(A) p dy�Cp*(J r )1&p�2 2&Kp :
K&r&1

j=0

2 jp :
K&1

i=j \|I \|
1

0
|a(t, y)| 2 dy+

1�2

_(D2i (x +4 t)+D2i (x +4 t +4 2&j&1)) dt+
p

Observe by (15) that

1[0, 2&K ) (t) D2i (x +4 t)=2i1[2&K+r, 2&i) (x) 1[0, 2&K ) (t)

and

1[0, 2&K) (t) D2i (x +4 t +4 2&j&1)=2 i1[2&j&1, 2&j&1+2&i) (x) 1[0, 2&K ) (t)

if j�i�K&1 and x � [0, 2&K+r). So

|
Jr

(A) p dy�Cp*(J r)1&p�2 2&Kp :
K&r&1

j=0

2jp :
K&1

i=j

2ip \|I
|

1

0
|a(t, y)| 2 dy+

1�2

dt+
p

_[1[2&K+r, 2&i) (x)+1[2&j&1, 2&j&1+2&i) (x)].
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Using Ho� lder's inequality and the definition of the atom we get that

|
I \|

1

0
|a(t, y)| 2 dy+

1�2

dt�\|
1

0
|

1

0
|a(t, y)| 2 dy dt+

1�2

2&K�2

�2&K�2+K�p&L�2+L�p2&K�2.

Hence

|
[0, 1)"I r |Jr

(A) p dx dy�Cp2r(1&p�2)2&2Kp+K :
K&r&1

j=0

2jp :
K&1

i=j

2i( p&1)

�Cp2r(1&p�2)2&2Kp+K :
K&r&1

j=0

2 j(2p&1)

�Cp2r(2&5p�2)

if p<1. For 4�5<p<1 let $ :=5p�2&2>0. If p=1 then

|
[0, 1)"I r |Jr

(A) p dx dy�C2r�2 :
K&r&1

j=0

2 j&K(K&j)�C2r�2 :
�

k=r+1

k2&k.

Since

:
�

k=r+1

k2&k=2&r(r+2)�C#2&r#

for an arbitrary 0<#<1, we have

|
[0, 1)"I r |Jr

(A) p dx dy�C2&r$

with $ :=#&1�2. If we choose 1�2<#<1 then $>0.
Similarly,

|
Jr

(B) p dy�Cp*(J r )1&p�2 :
K&r&1

j=0

2 jp :
�

i=K

2&ip \|I \|
1

0
|a(t, y)|2 dy+

1�2

_(D2i (x +4 t)+D2i (x +4 t +4 2&j&1)) dt+
p

.

If i�K and x � [0, 2&K+r) then

1[0, 2&K)(t) D2i (x +4 t)=0
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and

1[0, 2&K) (t) D2i (x +4 t +4 2&j&1)

=2i :
2&K+i

k=1

1[2&j&1+(k&1)2&i, 2&j&1+k2&i) (x) 1[(k&1) 2&i, k2&i ) (t).

Therefore

|
Jr

(B) p dy

�Cp*(J r )1&p�2 :
K&r&1

j=0

2 jp :
�

i=K

2&ip2ip :
2&K+i

k=1

1[2&j&1+(k&1) 2&i, 2&j&1+k2&i) (x)

_\|I \|
1

0
|a(t, y)| 2 dy+

1�2

1[(k&1) 2&i, k2&i) (t) dt+
p

.

Using the inequality

|
I \|

1

0
|a(t, y)| 2 dy+

1�2

1[(k&1) 2&i, k2&i) (t) dt�2&K�2+K�p&L�2+L�p2&i�2

we conclude

|
[0, 1)"I r |J r

(B) p dx dy

�Cp2r(1&p�2)2&Kp�2 :
K&r&1

j=0

2 jp :
�

i=K

2&ip�2�Cp2r(1&3p�2).

Consequently,

|
[0, 1)"I r |Jr

|_*a(x, y)| p dx dy�Cp2&r$ (22)

with $ :=5p�2&2>0 if 4�5<p<1 and $ :=#&1�2 (1�2<#<1) if p=1.

Step 2: Integrating over ([0, 1)"I r )_[(0, 1)"J r). Similarly to Step 1 we
get for x � I r and y � J r that
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|_n, ma(x, y)|

� :
K&r&1

j=0

2 j&N :
N&1

i=j

:
L&r&1

k=0

2k&M :
M&1

l=k

:

�C2&K :
K&r&1

j=0

2 j :
K&1

i=j

2&L :
L&r&1

k=0

2k :
L&1

l=k

:

+C2&K :
K&r&1

j=0

2 j :
K&1

i=j

:
L&r&1

k=0

2k :
�

l=L

2&l:

+C :
K&r&1

j=0

2 j :
�

i=K

2&i2&L :
L&r&1

k=0

2k :
L&1

l=k

:

+C :
K&r&1

j=0

2 j :
�

i=K

2&i :
L&r&1

k=0

2k :
�

l=L

2&l:

=: (A)+(B)+(C)+(D)

where

: :=|
I
|

J
|a(t, u)| (D2i (x +4 t)+D2i (x +4 t +4 2&j&1))

_(D2l ( y +4 u)+D2l ( y +4 u +4 2&k&1)) dt du.

With the method used in Step 1 we van verify that

|
[0, 1)"I r |[0, 1)"Jr

(A) p dx dy�Cp 2&Kp :
K&r&1

j=0

2 jp :
K&1

i=j

2&Lp :
L&r&1

k=0

2kp :
L&1

l=k

2ip2 lp2&i2&l2&Kp�2&Lp�2+K+L2&Kp�2&Lp�2

�Cp2&r$ (23)

with $ :=4p&2 if 4�5<p<1 and $ :=2#&1(1�2<#<1) if p=1 and

|
[0, 1)"I r |[0, 1)"J r

(B) p dx dy�Cp2&Kp :
K&r&1

j=0

2 jp :
K&1

i=j

:
L&r&1

k=0

2kp :
�

l=L

2&lp

2ip2 lp2&i2&L2&Kp�2&Lp�2+K+L2&Kp�2&Lp�2

�Cp2&r$ (24)
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with $ :=3p&1 if 4�5<p<1 and $ :=#+1�2 if p=1. The estimation of
(C ) is similar. Finally,

|
[0, 1)"I r |[0, 1)"Jr

(D) p dx dy�Cp :
K&r&1

j=0

2 jp :
�

i=K

2&ip :
L&r&1

k=0

2kp :
�

l=L

2&lp

2ip2 lp2&K2&L2&Kp�2&Lp�2+K+L2&ip�2&lp�2

�Cp 2&2rp. (25)

Step 3: integrating over I r_([0, 1)"J r ). This case is analogue to Step 1.

Combining (22)�(25) we can establish that

|
[0, 1)2 "Rr

|_*a(x, y)| p dx dy�Cp2&r$

where $ :=5p�2&2>0 if 4�5<p<1 and $ :=#&1�2 (1�2<#<1) if p=1.
The proof of the theorem is complete. K

Note that, in the one-parameter case, (20) was proved by Fujii [12] for
p=q=1 (see also Schipp and Simon [22]), (21) by Schipp [21], and,
moreover, in the two-parameter case, (21) was shown by Mo� ricz, et al.
[18] for the L log L class instead of H *

1 . This theorem concerning the
maximal Cesa� ro operators restricted on a cone can be found in Weisz [25]
(see also Mo� ricz, et al. [18]).

By (16) it is easy to show that the two-dimensional Walsh polyno-
mials are dense in H *

1 . Hence (21) and the usual density argument (see
Marcinkievicz and Zygmund [16]) imply

Corollary 2. If f # H *

1 then

_n, m f � f a.e. as min(n, m) � �.

Considering the operator _ and (18) one can extend Theorem 2 to every
2�3<p<�. The proof is similar to that of Theorem 3 and is left to the
reader.

Theorem 4. There are absolute constants Cp, q such that

&_f&p, q�Cp, q & f &Hp, q ( f # Hp, q)

for every 2�3<p<� and 0<q��.
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