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A new atomic decomposition of the two-parameter dyadic martingale Hardy
spaces H, defined by the quadratic variation is given. We introduce H ,-quasi-local
operators and prove that if a sublinear operator V' is H ,-quasi-local and bounded
from L, to L, then it is also bounded from H, to L, (0 <p<1). By an interpola-
tion theorem we get that V is of weak type (H [, L,) where the Hardy space H}
is defined by the hybrid maximal function. As an application it is shown that the
maximal operator of the Cesaro means of a two-parameter martingale is bounded
from H, to L, (4/5<p<oc0) and is of weak type (H}, L,). So we obtain that the
Cesaro means of a function fe H{ converge a.e. to the function in question.
Finally, it is verified that if the supremum is taken over all two-powers, only, then
the maximal operator of the Cesaro means is bounded from H, to L, for every
2/3<p< 0.  © 1997 Academic Press

1. INTRODUCTION

For double trigonometric Fourier series Marcinkievicz and Zygmund
[16] proved that the Cesaro means ¢, f of a function f'e L, converge a.e.
to fas n, m — oo provided that the pairs (n, m) are in a positive cone, i.e.,
provided that m/n <a and n/m <a. This result for double Walsh—Fourier
series is verified by the author [25].

It is known that, for double Walsh-Fourier series, o, ,, f— fin L, norm
as min(n, m)— co whenever felL, for some 1<p<co. Moreover, if
1 <p < oo then the convergence holds a.e., too (see Weisz [28]). Moricz et
al. [ 18] have proved that if f'e€ L log L then the Cesaro summability holds.

The Hardy-Lorentz spaces H Eq and H, , of two-parameter martingales
on the unit square are defined by the L, , Lorentz norms of the diagonal
maximal function sup, . n | /. ,| and of the two-parameter quadratic varia-
tion (0 <p, ¢ < o), respectively. Of course, H,=H,' and H,=H, , are
the usual Hardy spaces (0 <p < o). Note that H, ,c H"

P-4 p.q
168
0021-9045/97 $25.00

Copyright © 1997 by Academic Press
All rights of reproduction in any form reserved.



CESARO SUMMABILITY 169

The following maximal operators of the Cesaro means are to be
investigated: o*f, resp. af, is defined by the supremum over N of |a,, ,, f],
resp. |g, o f|. Let a%f be the supremum over a positive cone of |g,_,, f|.
In the one-dimensional case it is known that ¢* is bounded from H, to L,
and is of weak type (L,, L,), i.e.,

sup ad(a*f >a) < C | f],

a>0

whenever f'e L, (see Fujii [ 12] and Schipp [21]). It was proved by Moricz
et al. [18] that the operator ¢ is of weak type (H{,L,) where HY is
defined by the expectation of the hybrid maximal function sup, .~ |/, « |-
Moreover, o* is bounded from L, to L, (1 <p<oo) and ¢* is bounded
from HIE'q to L,, for 1/2<p<oo and 0<g<oo and is of weak type
(L,,L,) (see Weisz [28] and [25]).

In this paper we extend these results. A new atomic decomposition of H,
is given; more exactly, the H,-atoms are decomposed into the sum of
“elementary (rectangle) particles.” By this theorem, in the definition of the
H ,-quasi-local operators it is enough to take rectangle H,-atoms. An
operator V is H ,-quasi-local (0 <p <1) if there exists >0 such that for
every rectangle H ,-atom a and for every r>1 the integral of |Va|” over
[0, 1)*\R" is less than C,2~ " where the dyadic rectangle R is the support
of @ and R" is the 2"-fold dilation of R. With the help of Journé’s covering
lemma [ 15] we show that a sublinear and H ,-quasi-local operator V" which
is bounded from L, to L, is also bounded from H,to L, (0 <p<1). We
get with interpolation that V is bounded from H, , to L, , (0<p<2,
0<g< o) as well and is of weak type (H, L,). The analogous results for
the classical Hardy space are due to Chang and Fefferman [7, 8].

It will be shown that ¢* is H,-quasi-local for each 4/5<p<1. Conse-
quently, ¢* is bounded from H, , to L, , for 4/5<p < o0, 0 <g< o0, and
is of weak type (H{, L,). A usual density argument implies that o, ,, /= f
a.e. as min (n, m)—> oo whenever f'e H#. Finally, it is proved that the
operator ¢ is H,-quasi-local for each 2/3<p <1 and so, by interpolation,
it is bounded from H, , to L, , for every 2/3 <p < oo and 0 <g < co.

2. MARTINGALES AND HARDY SPACES

For a set X # ¢J let X? be its Cartesian product X x X taken with itself.
An element from N2 will be denoted by (n, m) or simple by x. In this paper
the unit square [0, 1)? and the two-dimensional Lebesgue measure 4 are to
be considered.
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By a dyadic interval we mean one of the form [k27", (k+1)27") for
some k,neN, 0<k<?2" Given neN and xe[0, 1) let /,(x) denote the
dyadic interval of length 2" which contains x. The Cartesian product of
two dyadic intervals is said to be a dyadic rectangle. Clearly, the dyadic
rectangle of area 2" x 2" containing (x, y) €[0, 1)? is given by

L (X, p) 1= L(x) X 1,( ).

The o-algebra generated by the dyadic rectangles {7, ,.(x): xe[0, 1)*}
will be denoted by %, ,, (n, me N), more precisely,

T, =o{ k27" (k+1)27") x [127™, (I+1)27"):0 <k <2", 0 <[ <2™}

where o(#) denotes the g-algebra generated by an arbitrary set system 7.
Introduce the following g-algebras:

(@]

0
‘97)11,00 :=O'< U egtrq,k)a'%700,}12:20.<
k

=0

7 > (n=(ny, m) eN?).

The expectation and the conditional expectation operators relative to %,
Fry o and o, (0 e N?) are denoted by E, E,,, E, .wsand E , , respec-
tively. We brleﬂy write L, or L,[0, 1)* instead of the real L ([0, 1)% )
space while the norm (or quasmorm) of this space is defined by 1/, :=
(E|f]?)'? (0 <p < o0). For simplicity, we assume that for a function fe L,
we have E, , f=FE, ,f=0 (neN).

An integrable sequence f=(f,, ne N?) is said to be a martingale if

(i) it is adapted, ie., f, is &, measurable for all n e N>

(il) E,f,,=f, for all n <m, where for n=(n,, n,), m=(m,, m,) e N,
n<m means that n; <m,; and n, <m,.

For simplicity, we always suppose that for a martingale /' we have f,, =0 if
n; =0 or n,=0. Of course, the theorems that are to be proved later are
true with a slight modification without this condition, too.

The martingale f'=(f,, neN?) is said to be L, -bounded (0<p< o) if
fneL, (neN?) and

11, 2= sup [ £, ll,, < 0.

neN?

If fe L, then it is easy to show that the sequencgfz (E,f.neN?) is a
martingale. Moreover, if 1 <p <oo and fe L, then fis L,-bounded and

lim |E, f—f],=0,

min(n, ny) —
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consequently,

171,= 111,

(see Neveu [19]). The converse of the latest proposition holds also if
l<p<oo (see Neveu [19]): for an arbitrary martingale f=(f,, ne N?)
there exists a function geL, for which f,=FE,g if and only if f is
L,-bounded. If p=1 then there exists a function ge L, of the preceeding
type if and only if f is uniformly integrable (see Neveu [ 19]), namely, if

lim sup j \|f,| dP=0.

y— 0 neN? sl >»}

Thus the map fi— f:=(E, f, ne N?) is isometric from L, onto the space
of L,-bounded martingales when 1<p<oco. Consequently, these two
spaces can be identified with each other. Similarly, the L, space can be
identified with the space of uniformly integrable martingales. For this
reason a function fe L, and the corresponding martingale (E, f, ne N?)
will be denoted by the same symbol f.

The distribution function of a Borel measurable function f'is defined by

MU >af) =a{x: | f(x)| >a})  (x=0).

The weak L, space L) (0 <p < o) consists of all measurable functions f
for which

HfHL* (=Sup O(}({ |f| >o(})1/17< 0

a>0

while we set L* =L _ .

The spaces L) are special cases of the more general Lorentz spaces L, ..
In their definition another concept is used. For a measurable function f the
non-increasing rearangement is defined by

Fo) i =inf{oa A{|f] >a}) <1}

Lorentz space L, , is defined as follows: for 0 <p < o0, 0 <g <0,

1/q
Hpr,q <f f )4 ar dt>

t

while for 0 <p < o0

1f | . oo :=sup t7f(2).

t>0
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Let
L,,=L, ([0,1)%2):={f|fl,,<o}.
One can show the following equalities:
=Ly (O<p< o)
(see e.g. Bennett and Sharpley [1] or Bergh and Lofstrom [2]).

The maximal function and hybrid maximal function of a martingale
f=(fo. ms n,meN) are defined by

fr=sup [f, .l 7 i=supl|f, .|

n,meN nelN

It is easy to see that, in the case f'e L,, the maximal functions can also be
given by

1
*x,y)= sup ————— dl
f Y n, m EN )“(In, m(x! y)) I, m(x, y)f
and
Fren=sup o[ fupd
nen MUL(X)) [0
respectively.

We define the martingale differences by
dnf::fm,nz _fnlfl,nz _fnl‘nzfl +f;7171,n271 (HENZ)
and d;_ o f=fo.xr /=0 (keN).

It is easy to show that (d,f, neN?) is an integrable and adapted
sequence. Moreover, one can conclude that

E,d,f=0  (nZm). (1)
Conversely, if an integrable and adapted function sequence (d,,, n € N?) has

the property (1) then (f,, neN?) is a martingale where f, :=3
The quadratic variation of a martingale f is introduced with

m<n“m:*

st =( ¥ |dnf|2>”2.

neN?
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It was proved by Brossard [4, 5] and Metraux [17] that
SO, ~ 1 *1,  (0<p<o0) (2)
where ~ denotes the equivalence of the norms. The equivalences
L 1~ 17~ 1S, (I<p<oo) 3)

follow from Doob’s inequality (see Neveu [19], Cairoli [6]). For an
arbitrary function e L, we have

sup ad(f* >o) < || 7 (4)
a>0
and
sup aA(S(f)>a) < C | f7];. (5)

Note that (4) was proved by Weisz [27] and (5) by Frangos and Imkeller
[11]. On the right-hand sides of (4) and (5), || /|, cannot be replaced by
| f11; counterexamples can be found for the first case in Cairoli [6] and
for the second case in Imkeller [ 14].

For 0<p, g< oo the martingale Hardy—Lorentz spaces H, , and H :‘q
consist of all martingales for which

11y, o= ISy g < 00

and

£ agg, o= 17 < o0

respectively. In case p = ¢ the usual definitions of Hardy spaces H, ,= H,
and H} = H are obtained. Note that it is unknown whether H,, , can be
defined with f*. We verified in [27] that

H, ~L (1<p<oo,0<g< o).

y2%7) P-4
Recall that L log L= H, more exactly,
E(f*)<C+CE(|f|log™ |f])
where log ™ u=1y,., logu (see Garsia [13]).

The following interpolation result concerning Hardy—Lorentz spaces will
be used several times in this paper (see Weisz [26] and [27]).
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THEOREM A. If a sublinear operator V' is bounded from H, to L, and
from H, to L, then it is also bounded from H, , to L, , if po<p<p, and
0<g<oo.

3. QUASI-LOCAL OPERATORS

The atomic decomposition of the Hardy spaces in the two-parameter
case is much more complicated than in the one-parameter case. One reason
for this is that the support of a two-parameter atom is not a dyadic interval
or square but an open set. This was proved in Bernard [3] and Weisz
[27]. However, we now give a finer atomic decomposition and decompose
the atoms into “elementary (rectangle) particles.”

First of all we introduce some notations. Suppose F< [0, 1)? is open
with respect to the topology induced by the dyadic rectangles, which means
F is the union of countably many dyadic rectangles. Denote by .#(F) the
maximal dyadic subrectangles of F. Let .#,(F) denote those dyadic sub-
rectangles Rc F, R=1xJ that are maximal in the x direction. In other
words, if S=1'"xJ> R is a dyadic subrectangle of F then I=1'. Define
Mo(F) similarly.

A function a€ L, is an H -atom if

(i) supp ac F for an open set F< [0, 1)?
(ii) al,<A(F)'2-'p

(1) a can be further decomposed into the sum of “elementary
particles” are L, (Re .#(F)) in the sense of

E,a= Y E, ,az ae. forall n,meN,
Re Z(F)

satisfying
() suppar<=RcF
(p) forall x,ye[0,1)and Re .#(F),

1 1
| axtxy)dy=| apxy)dy=0
0 0

1/2
() < > IaR|§> S AF)12=,

Re.//(F)

If ae L, satisfies (i) with a dyadic rectangle F, (ii), and () then a is
called a rectangle H ,-atom.
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Now the atomic decomposition of H, is formulated.
THEOREM 1. A martingale f = (f, ,;n,meN)isin H,(0<p<1) if and

only if there exist a sequence (a*,keN) of H ,-atoms and a sequence
(g, ke N) of real numbers such that

Z :ukEn, mak :fn,m for all n, meN
=0

) (6)
Z luk
Moreover, the following equivalence of norms holds:
) 0 1/p
P~int( 3 lael?) )
k=0

where the infimum is taken over all decompositions of f of the form (6).

Proof. 1t is proved in Weisz [27] that there exist functions a*e L,
satisfying (i) and (ii) and real numbers yu, (k€ N) such that (6) and one
side of (7), more exactly, the inequality

0 1/p
(2 tal?) " <€ 11y
k=0

hold.
Denote one of the functions a* by a. Let F be the support of a. It is
also verified in Weisz [27] that there exists a non-decreasing sequence

(F,. .;n,meN) of sets, which means F, ,c F, ,, if k<n and /<m, such
that
Fom€Z 1 and U F..=F.
n,meN
Moreover,

a= Y 1z .4, ,a

n,meN

Equation (1) implies that the martingale difference are orthogonal, so we
have

al%=E< X g, |dn,ma|2>. (8)

n,meN
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Since F, ,,€ %, | . 1, it can be decomposed into a finite union of dyadic

rectangles F* | ie.,

n,m>
_ k
Fn,m_ U Fn,m
k

with F* eZ

n,m n—1,m—1-

To each F¥  we associate a maximal dyadic subrectangle £% of F, i.e.,

n,m n,m

F%  e.dl(F), such that FX < F*  For Re.#(F) let

n,m n,m

ag:= Y > Lyt d, na.

n,meN k:FK R

nom=

It is easy to see that this sum converges a.e. and also in L, norm.
Obviously,

En,ma= Z En,maR (n9meN)

Re . Z(F)

since the sum of the right-hand side is finite for each (n, m)e N2 Note
that

a= Y ag in L,

Re //(F)

because of the orthogonality of the martingale differences. Since F’ , < R,
(o) is obvious. If Re #y_, ,,_, then (1) implies that

E. ap=0 forall (k,1) # (N, M).
Henceforth
E, ,ar=0 forall k<N-—1.

This yields that

1
f ag(x,y)dx=0.
0

The other equation of (f) can be proved in the same way. Using the
orthogonality of the martingale difference and the fact that the sets
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F* are disjoint for each fixed n, meN and (8), we can conclude that

n,m

¥ daili= T E( X % ig )

Re.//(F) Re /(F) n,meN k:Fk =R

nom=

=E< » ZlFﬁ‘m|d,,’ma|2>
n,meN k

=llal3<A(F) =27

which proves (y).
For the other side of (7) we prove that if a is an H ,-atom then

laly, <1  (0<p<l),

Indeed, from the definition of the atom it follows that

d,,a= Y d,,azg (n,meN)

n,m
Re.//(F)

and
supp d,, ,,ar<R.
Hence
supp S(a) < F.
Applying (2), (3), and Holder’s inequality we have

E(S(a)) <[E(S*(a))]"? A(F)' " <.

Assume that 0 <p <1 and f has a decomposition of the form (6). It is easy

to check that in this case
SUN< X il Sla')
Consequently,
SIS T bl IS < X el

holds, which finishes the proof of the theorem. |i

)

(10)
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Note that H, cannot be decomposed into rectangle H -atoms; a counter-
example can be found in Weisz [ 27].

The analogue of this theorem in the classical case was shown by
Fefferman [8].

Motivated by the definition in Moricz et al. [ 18] and Fefferman [8] we
introduce the H,-quasi-local operators. For each daydic interval I let I”
(reN) be the dyadic interval for which /<" and

AT =2"MT).
If R:=1xJ is a dyadic rectangle then set
R :=I"xJ"

Although H, cannot be decomposed into rectangle atoms, in the defini-
tion of quasi-local operators it is enough to take these atoms.

An operator V, which maps the set of martingales into the collection of
measurable functions, is called H ,-quasi-local if there exists 6 >0 such that
for every rectangle H,-atom a supported on the dyadic rectangle R and for
every r>1 one has

j |Va|? di< C, 2",
[0, 1)’\R"

Before stating the main result of this section we recall Journé’s covering
lemma in one of its forms. Opposed to the one-parameter case, an open
subset of [0, 1) cannot be decomposed into disjoint maximal dyadic
rectangles, however the following lemma holds.

LemMma 1 (Journé [15]). Assume that F is an open subset of [0, 1)* and
R=1IxJ belongs to JM,(F). Let Fy:={(1)*>1/2} and I be the maximal
dyadic interval containing I such that IxJc F,, ie., IxJe #,(F,). Set

M(T)
PR, F): =)
Define y,(R, F) similarly. Then
/1< U fo><C/1(F) (11)
Re /)(F)
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and
Y (R F)7?AMR) < C5AF), (12)
Re /)(F)
for every 0 >0 where Cy depends only on 6, not on F.

Of course there is a symmetric form of this lemma for rectangles in
A (F).
Note that (11) follows easily from Markov’s inequality and from (3):

AMF,)<4E[(1,)**]1 < CE(1}) = CAF). (13)

Journé’s lemma is extended to higher dimensions by Pipher [20].

The following result says that for an operator V" to be bounded from H,
to L, (0<p<1) it is enough to check V' on rectangle H,-atoms and the
boundedness of V on L,.

THEOREM 2. Suppose that the operator V' is sublinear and H ,-quasi-local
for some 0 <p < 1. If V is bounded from L, to L, then

VA, <Cpllflm,  (feH,).

Proof. Similarly to (9) and (10) it is enough to show that if @ is an
H ,-atom then

IVal,<C,. (14)
Let a be an H,-atom with support F. Set
F:={(1p)*>1/2} and Fy={(15)*>1/2}.
As in (13), we have
ME,) < CMF,) < CAF).

Given a dyadic rectangle R =1 x J e ./(F) define the dyadic interval  such
that

Py

I>I and R :=IxJe.l(F),).

Furthermore define the dyadic interval J such that

JoJ and  R:=IxJe.(F,).
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Set
2" =y(R, F) :=—+ and 272 :=y,(R, Fy) :=—.

Take the decomposition

a= ) ag

Re /(F)

as in Theorem 1. Then

NP2 2
|Va|”di<i< U R> O |Va|2d/1>
R [0, 1)

URe.u(r) R Re W(F)

SAF,) PP JF)P?*-1<C,.

So we have to consider

J WVal?di< Y f \Vag|” db.
[0. D2\URre.x(r) R Re.u(F) [0, 1)2\R
Obviously,
f |Vag|? di < |Vagl? dj. + |Vag|? d.
[0. D?\R (0. DA x [0, 1) [0. 1) x ([0, \J)
Observe that
j |Vag|? di < |VaR|PdA:j \Vag|” d.
([0, D\/)x [0, 1) [0, 1)2\(/x J'1) [0, 1)2\R"1
Since
agr

;L(R)l/27 1/p
lagll

is a rectangle H ,-atom, we have by the H ,-quasi-locality that

L[o D\7)x[0, 1) lVaR|pdl<Cp27M laglly A(R)' —77
. D\F) x [0,

= C]Jyl(R7 F)_(i HaRHgl(R)l —p/2.
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By Hoélder’s inequality and Journé’s lemma,

|Vagl|? di

Re.u(F) ([0, D\I) < [0, 1)

p/2 i 1—p/2
<cp< 5y |aR|§> ( 5 %(R,F)z"/@M(R))

Re /(F) Re . /(F)
< C MF)P 1 A(F)1 2= C

e
Similarly,
|Vag|? da
Re.#(F) 0. 1)< ([0, D\J)

<C, Y 7aARLF) 7 Jlagly AR) 2

Re #(F)

1—p/2
<c,,z<F>P/“< D n(RﬁF»”/M)MR)) .

Re /(F)

It is easy to see that if R, R,e . #(F) and Ry =R, then R,nR,=J or
R,=R,. Recall that R' € .#,(F,). So

Y p(RLF) PP AR)= Y <Z ;V(R>)VZ(S,F1>2§/M>

Re./(F) Se.#|(F)) \R =5

< Z AS) Vz(Sa F)) A

Se.4,(Fr)

< C,A(F\) < C,i(F)

where we applied again Journé’s lemma and (13). Consequently,

Vag|" di<C,
Re.u(F) "0, 1) = ([0, D\J)

which proves (14) as well as the theorem. ||

This result in the classical case is due to Fefferman [8].
Theorem A and (5) imply

CoRrROLLARY 1. Suppose that the sublinear operator V is H ,-quasi-local
for each po<p <1 (py<1). If V is bounded from L, to L, then

H I/f‘Hp,q< Cp,q Hf”Hpq (fe Hp,q)
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Sor every po<p <2 and 0 < q< oo. Specially, V is of weak type (HY, L,),
ie., if feH then

IV, oo =sup al(|Vf|>o) S Cy [ flla ..

a>0

=Cysup ad(S(f)>a) < Cy [ [l mp-

x>0

4. CESARO SUMMABILITY OF DOUBLE
WALSH-FOURIER SERIES

First the Walsh system is to be introduced. Every point x€ [0, 1) can be
written in the following way:

X

k+1°
02

X =
k

0<x,<2,x,eN.

I M8

In case there are two different forms, we choose the one for which
limkaocxk=0.
The functions

ru(x) :=exp(nx,/ —1) (neN)
are called Rademacher functions.

The product system generated by these functions is the one-dimensional
Walsh system

w,(x) = ﬁ rr(x)™

where ne ¥, n,2%, 0<n, <2, and n,eN.
The Kronecker product (w,, ,,; #, m e N) of two Walsh systems is said to
be the two-dimensional Walsh system. Thus

W, (X, Y) 2= W, (X) W ().

Recall that the Walsh—Dirichlet kernels
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satisfy

2" if xe[0,277)

Dalx) = {0 it xe[2"1)

for neN (see Fine [10]).
If fe L, then the number

f(n,m):=E(fw,_,.)

is said to be the (n, m)th Walsh—Fourier coefficient of f (n, meN). Let us
extend this definition to martingales as well. If f'=(f, ;; k,/eN) is a mar-
tingale then let

f(f’l, m) = hm E(f}c,lwn, m) (ns WZEN)

min(k, /) > oo

Since w,, ,, is Z, , measurable for n, m <2*, it can immediately be seen
that this limit does exist. Note that if fe L, then E, ,f—fin L, norm as
k, [ - oo, hence

f,my= Lm  E(E. f)Wan)  (n,meN).

min(k, /) > oo

Thus the Walsh—Fourier coefficients of f'€ L, are the same as the ones of
the martingale (E, ,f; k, /e N) obtained from f.

Denote by s, ,,f the (n, m)th partial sum of the Walsh—Fourier series of
a martingale f, namely,

n—1m—1
Sn,mf:z Z Z f(k: 1) M}k,l'
k=0 /=0
It is easy to see that

SZ”, 2’7’f:f;1, m* (16)

Recall that the Walsh—Fejér kernels

satisfy

N—1 N—1
|K,(x)] < Z 2/=N Z (Dyi(x)+ Dy(x+27771) (17)
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for xe[0,1), n, NeN, and 2V~ '<n < 2%, and
K2,1(x)=]2<2”D2n(x)+ Y 2" Dox + 2f‘)> (18)
j=0

for xe[0,1) and neN, where + denotes the dyadic addition (see e.g.
Shipp et al. [23]). For n,meN and a martingale f the Cesaro mean of
order (n, m) of the double Walsh—Fourier series of f is given by

nmf _im i g] Sk,lf

It is simple to show that

Ol ()= || Flw) Koo ) Ko (y ) di

if feL,.
For a martingale f we consider the maximal operators

o*f:= sup lo, .f|, af == sup |oum mfl.

n,meN n,meN

It is shown in Weisz [28] that
le*fll, < C, I/,  (1<p<o0). (19)

Now we state our main result.

THEOREM 3. There are absolute constants C and C, , such that

lo*fllp. s < Cp g 1/,  (fEH,,) (20)

for every 4/5<p < oo and 0 <q < oo. Especially, if fe H? then
1
Mo*f>a) < Hf#Hl (o> 0). (21)

Proof. By Corollary 1, (19), and Wolff’s interpolation theorem [29]
(see also Weisz [27]), the proof of Theorem 3 will be complete if we show
that the operator o* is H ,-quasi-local for every 4/5 <p <1.

Let a be a rectangle H,-atom with support R=1xJ and A(I)=2"%,
MJ)=2"* (K, LeN). Without loss of generality we can suppose that
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I=[0,2"%)and J=[0,27%). It is easy to see that d(n, m)=0 if n <2% or
m<2*, so, in this case, o, ,,a=0. Therefore we assume that n>2* and
m=2k

To prove the quasi-locality of ¢* we have to integrate |o*a|” over
[0, 1)>\R" where r>1 is arbitrary. We do this in three steps.

Step 1: Integrating over ([0, 1)\[")xJ". If j=K—r and x¢I" then
x + 2777 1¢I". Consequently, for x¢ 1" and i>j> K—r we have

a(t,u) Dy(x + t)=a(t,u) Dy(x + ¢t + 2771 =0.

Recall that 2V >n>2""! so N—1 > K. Henceforth, for x¢ 1",

|K,(x + t)| dt

|0, mal(x, y)| <L‘La(r, u) K,(y + u) du

<zz~vzj\j Koy + ) d

(Dy(x + )+ Dy(x +t + 277 1)) dt

<C2 % Z Z’Zj“ (t,u) K, (y + u) du

(sz(x + )+ Dy(x +t+27"Y)dr

K—r—1

+C Z 2/22 j

(sz(x + )+ Dy(x + ¢+ 277 1) dr

J attou) K,(y 3 w) du

Observe that the right hand side is independent of n. Therefore

K—r—1 K—1

Ya(x,y)<C27% Y 2V ) J(sz(x FO+Dux 4277
i—0 I

dt

sup
meN

j a(t, ) K, (v + u) du

K—r—1
+C Y 2 Z 2- f (Dy(x + 1)+ Dylx + 1+ 2771

j=0 =

dt

sup

meN

= (A)+(B).

j a(t,u) K,(y + u) du
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By Holder’s inequality,

[y ay
g
K—r—1 ) K—1 . . . -
VIV R D VD) <L(D2f(x FO4+Dy(x+ 14277
j=0 i=j
. 1]
j sup ja(t, u)K,(y + u)du dydl) .
J"meN |VJ

Using again Holder inequality and (19) for one dimension and for a fixed ¢,
we obtain

f sup Ja(z, u) K, (y + u)du|dy
J"meN |/
1 . 2 12
</1(J’)‘/2< sup ja(t,u)Km(eru)du dy>
0 meN |YJ
1 12
<2 ([ late Py
0
Hence
K—r—1 K—1 1 1/2
[ yay<caun-rmaey ory O U |a(z,y)|2dy>
7 j=0 i=j \TTATO

P
X(Dy(x + 1)+ Dy(x + 1t +2771)) dt>
Observe by (15) that
l[o’sz)(l) D.i(x + t)= 21.1[271“;-’27,‘)()6) 1[0’271<)(Z)

and
Lio,2-x)(2) Dayi(x +14 2_'/_1):2i1[2*/*1,2*/*1+2*f)(x) Lpo,2-5) (1)

if j<Si<K—1and x¢[0,27%%"). So

K—r—1
L, (A)? dy < C,A(J7) 722Ky

j=0 i=j

2'S i <Ul la(t, )2 dy)l/z dt)p

0

X [1[2—K+r, 27,‘)()(?) + 1[27/71, o—j—-1 +27,>)(x)].
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Using Holder’s inequality and the definition of the atom we get that

1 1/2 1,1 1/2
j(j |a<z,y>|2dy> dz<<j | |d(l,y)|2dydt> 25"
1\70 0 Yo

<2 K2+Kp—L2+Lipy—KP2,

Hence
K—r—1
j J (A)? dx dy < C, 27 =P =2k Ky o z 2ip—1)
L0, D\ Jj=0 i=j
K—r—1
< szr(] 7p/2)272l(p+1( Z 2]’(2117 1)
j=0

<C, 2=

ifp<l.Ford4/S<p<lletd:=5p/2—2>0.1f p=1 then
K—r—1 0
f f (A dxdy<C2? Y 2-KK—j)<C2? Y k2*
[0, D\I" Y J" j=0 k=r+1
Since
Y k2 h=2(r+2)<C2"7

k=r+1

for an arbitrary 0 <y <1, we have

[y ] P asrzca

with ¢ :=y—1/2. If we choose 1/2 <y <1 then J > 0.
Similarly,

K—r—1

1 12
J s ety on g oo (] [Hate i)

r
X (Dsyi(x + )+ Dy(x +t + 2f1))dt> )
If i>K and x¢[0,275"") then

150 2-5,(1) Doy(x + 1) =0
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and
Lo 2-x)(2) Dyi(x Fr427h
—K+i
=2 % lppivs—nztar 12 (0) L2t (0.
k=1
Therefore
[ By ay
Jr
K—r—1 . © o 2—K+i
<Cp;»(.]’)1717/2 Z 2.Jp z 2—irpip z 1[2*/’*1+(kf1)zfi’2—/—l+k27i)(x)
J=0 i=K k=1

1 12 4
X J j la(z, y)|> dy Lre—1y2-iga-in(2) dt | .
1 \Yo

Using the inequality
1 1/2
f <J la(t, )2 dy) Lotk 1) 2ot iy (1) dt QK2+ KIp= L2+ Lipp —i2
I 0

we conclude

J[0, D\I’ Lf (B)" dxdy

K—r—1 o
< szr(lfp/Z)szp/Z Z ij Z 271'17/2 < Cp2r(173p/2).
j=0 i=K
Consequently,
f j lo*a(x, y)|” dx dy < C,2 " (22)
[0, D\I" YJ"

with 6 :=5p/2—-2>01if4/5S5<p<land d:=yp—12 (12<y<l)if p=1.

Step 2: Integrating over ([0, 1)\I") x [ (0, 1)\J"). Similarly to Step 1 we
get for x¢ 1" and y ¢ J" that
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|0, ma(x, ¥)
K—r—1 N—1L—r—1
<y YUYy 2"M2a
Jj=0
K—r—1 L—r—1
<C2_Kz2’Z2L22"Zo¢
K—r—1 K—1L—-r—1
+ 2K z zfz b 2kzz ,
K—r—1 —r—1
+CZZ’ZZ’2LZZ"Za
Jj=0 i=K
K—r—1 e L—r—1 e}
+C Y 2y 2 Y 28y 27
Jj=0 i=K k=0 I=L

where

wi= [ | latt,w)] (Dy(x + 0+ Dy(x + 142771
X(Dy(y + u)+Dy(y + u + 27571 dt du.

With the method used in Step 1 we van verify that

K—r—1 L—r—1 L—1

[ ravay<co Z 2 Z 270 Y 2k Y
[0, D\Z" [0, 1)\J’ k=0

I=k

21’[12[/12 71'2 — [2 —Kp/2—Lp/2+ K+ L2 —Kp/2—Lp/2
<C,2" (23)

with  :=4p—2if4/S<p<land 6:=2y—1(12<y<1)if p=1 and

K—r—1 K—1L—r—1

J[0 1>\1J[onvr(B)pdx‘lngpTK” Yo oory Yy 2wy ook

j=0 i=j k=0 I=L

21’1;21172 71‘2 7L27Kp/27Lp/2 + K+ L2 —Kp/2—Lp/2

<Cp2—r§ (24)
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with 0:=3p—11if 4/5<p<1 and d:=p+1/2 if p=1. The estimation of
(C) is similar. Finally,

K—r—1 e L—r—1 w0

[ [ (yraxdy<c, ¥ 2ry 2y 2wy ow
[0, D\I" [0, 1)\J" k=0 /=L

j=0 i=K

21p2/p2 7K2 — L2 —Kp/2 —Lp/2+ K + L2 —ip/2—Ip/2
<C2 %, (25)

Step 3: integrating over I"x ([0, 1)\J"). This case is analogue to Step 1.
Combining (22)—(25) we can establish that

f lo*a(x, y)|” dxdy<C,27"
[0, D2\R"

where 0 :=5p/2—-2>0if4/S5<p<land d:=y—12 (12<y<])ifp=1.
The proof of the theorem is complete. ||

Note that, in the one-parameter case, (20) was proved by Fujii [ 12] for
p=q=1 (see also Schipp and Simon [22]), (21) by Schipp [21], and,
moreover, in the two-parameter case, (21) was shown by Moricz, et al.
[18] for the L log L class instead of H[ . This theorem concerning the
maximal Cesaro operators restricted on a cone can be found in Weisz [ 25]
(see also Moricz, et al. [18]).

By (16) it is easy to show that the two-dimensional Walsh polyno-
mials are dense in H. Hence (21) and the usual density argument (see
Marcinkievicz and Zygmund [ 16]) imply

COROLLARY 2. If feHY then
Opmf—=f a.e. as min(n, m)— 0.
Considering the operator ¢ and (18) one can extend Theorem 2 to every

2/3 <p < oo. The proof is similar to that of Theorem 3 and is left to the
reader.

THEOREM 4. There are absolute constants C, , such that

Ho-pr,q< Cp,q ”f”H],,q (fe Hp,q)

for every 2/3 <p < oo and 0 < g < o0.
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